

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Sponsored by CMR Educational Society)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – 'A' Grade - ISO 9001:2008 Certified)

Maisammaguda, Dhulapally (Post Via Hakimpet), Secunderabad – 500100

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

ANALOG & DIGITAL ELECTRONICS MODEL QUESTION PAPERS

FOR

II B.TECH II SEMESTER (R-22)

2023-2024

EXAM PATTERN

Time: 3 Hours Max. Marks: 60

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10

marks and may have a, b, c as sub questions.

UNIT 1

PART-A

(10Marks)

- 1a) Why transistor is called a current controlling device?
- b) What is meant by biasing?
- c) Define stabilization?
- d)Define operating point?
- e)State different types of biasing?
- f)what is meant by AC load line?
- g)State factors that effect the stability of Q point of a transistor?
- h) state h parameters if a transistor
- i) what is meant by DC load line?
- j) Define h parameter?

PART-B

(50 Marks)

- **2a)**Explain about need for biasing of a transistor & state factors affecting stability factor.
- b)Explain terms bias stabilization and bias compensation

OR

- 3a) Compare all the three biasing circuits
- b) Draw the circuits and explain principles of working of diode compensation for Vbe and Ico
- 4a)Draw fixed bias circuit and derive expression for stability factor S.
- b)Explain AC load line analysis

OR

- 5a) Draw self bias circuit and derive expression for stability factor S.
- b)Draw & explain h parameter model in CE configuration
- 6a) Draw Collector to base bias circuit and derive expression for stability factor S.
- b) Explain DC load line analysis

OR

- 7a) Draw & explain h parameter model in CB configuration
- b) state benefits of h parameters be& why they called so?
- 8a) Draw & explain h parameter model in CC configuration
- b)Explain process of analysis of CE configuration with simplified hybrid model

OR

- 9a) obtain CC h parameters in terms of CE parameters
- b) Explain process of analysis of CB configuration with simplified hybrid model

UNIT 2

PART-A

(10Marks)

1a)Define term "pinchoff" for a FET

- b) What are advantageous of FET over BJT?
- c) State applications of JFET
- d)State types of MOSFET
- e)what are different biasing circuits of FET?
- f) What is meant by gainbandwidth product?
- g)State terminals of a JFET?
- h) what is purpose of coupling capacitor in CS amplifier?
- i) state typesof FET amplifiers?
- j)Abbrevate FET

PART-B

(50 Marks)

2a)Explain about JFET Common Source amplifiers

b)Compare CS,CD & CG amplifiers

OR

- 3a) Explain about JFET Common Drain amplifiers
- b)Explain hybrid II model of CE transistor model with a neat sketch
- 4a)Compare FET amplifiers performance with BJT amplifiers
- b)State & explain how FET parameters will be determined?

OR

5a)Design FET amplifier

b)what is hybrid II model & Derive hybrid II model elements of a CE transistor

UNIT 3

PART-A

(10Marks)

- 1. a) Name some positional weighted systems
 - b) why is binary number system used in digital system?
 - c) What is canonical form ?
 - d) How Do You Convert A Decimal Number Into A Number In Any other system with base b?
 - e) what is 2's complement method?
 - f) What are logic gates & mention all logic gates?
 - g) How BCD addition is performed?
 - h) What is POS & SOP?
 - i) State basic theorems of Boolean Algebra
 - j) How can NOR gate can be used as inverter?

PART-B

(50 Marks)

2. a) Simplify Boolean expression Y = (A+B+C+D')(A+B'+C'+D')(A+B+C'+D')

(A'+B'+C+D') (A'+B'+C'+D)

b) Verify expression x'y' + x'y + xy = x'+y

OR

- 3. a) Simplify Boolean expression Y= ABC' +ABC +A'B'C on K-Map
 - b) Verify expression (AB+C+D)(C'+D)(C'+D+E) = ABC'+D
- 4 a) State & Prove Associative law & Distributive law
 - b) Prove NAND Gate as Universal gate [5+5]

OR

- 5. a) Prove NOR gate as Universal gate.
 - b) Develop a gray code for (42)10 and (97)10 and convert them to Hexa sequence
- 6 a) Convert 105.15 to binary
 - b) Convert 11011.101 to decimal
 - c) Convert 163.875 to octal
 - d) convert 756 into hexa decimal

OR

7.a)convert binary number 1011100010 to grey code

b)state steps to convert binary to gray code.

8.a) Construct EXNOR & EXOR, OR, AND by using NAND & NOR gates

b)Generate 4 bit gray code using mirror image property

OR

9.a) a) Convert 378.93to octal& Convert 5497 to binary [5]

b)Convert 1011011011 &01011111011.011111 to hexadecimal

10.a)Represent decimal numbers in Excess-3 code i)327 ii)123 iii)658

b)using 2's complement method to subtract i) 01100-00011 ii) 10011-11001

OR

11.a) perform binary addition in 8-4-2-1 BCD i) 24+18 ii) 48+58

b)perform(1110111000)-(001100010) by using 1's complement method

UNIT 4

PART-A (25 Marks)

- 1.a) What is Pair, Quad & Octet in K- Map?
- b) What do you mean by Don't care condition?
- c) what are prime implicants?
- d) State advantages of K-map?
- e)what is maxterm?
- f) what is minterm?

PART-B

(50 Marks)

- 2. a) state steps for converting NAND/NOR logic using graphical procedure.
 - b) construct Boolean expression((A+B)+C) D using NOR LOGIC

OR

- 3a) simplify given function $f(w,x,y,z) = \sum (0,1,2,6,7,8,10,12,14,15)$ using k map
- b) Implement function F using two level forms NAND-NAND & OR-NAND $f(A,B,C,D) = \sum m(0,104,6,8,9,10,12)$
- 4 a) Define Prime implicants& Essential Prime -Implicants
- b) Implement EX-OR gate using only NAND gates

OR

- 5.a) Find prime Implicants and determine which are essential $F(A,B,C,D) = \sum M(0,2,4,5,6,7,8,10,13,15)$
- b) State rules of K-map simplification
- 6. a) simplify function using K-map

F(A,B,C,D) = M(1,3,4,5,6,11,13,14,15)

OR

- 7.a) state Rules for obtaining NAND/NAND logic diagram.
 - b) Implement EX-OR gate using only NOR gates
- 8.a) Reduce function using K map technique

 $f(A,B,C,D) = \sum m(4,5,7,12,14,15) + d(3,8,10)$

- b) Implement Boolean function with NOR-NOR logic Y=AC+BC+AB+D
- 10.a) Simplify Boolean function

OR

11.a) state Rules for obtaining NOR-NOR logic diagram

b)simplify function & realize using universal gates

$$F(A,B.C) = A'BC' + ABC + B'C'' + A'B'$$

UNIT 5 PART-A(10 Marks)

- 1.a) What is full Adder?
 - b) Explain magnitude comparator
 - C) what is comparator?
 - d) why a multiplexer is called a data selector?
 - e)What is combinational circuit & sequential circuit?
 - f) What is full sub-tractor?
 - g)state the difference between flip-flop and latch?
 - h) what is encoder?
 - i) Draw excitation table of JK Flip-flop
 - j) why is a de-multiplexer is called a distributor?

PART-B (50 Marks)

- 2.a) Draw logic diagram of master slave J K flip- flop using NAND gates and explainit's Truth table
 - b) Design 16:1 multiplexer using 8:1 multiplexer

OR

- 3.a). Design 2 bit comparator using gates
 - b) state characteristic equation & truth table of SR flip flop along with it's logic diagram
- 4 a)Draw & explain operation of Master-Slave SR flip-flop with block diagram.
- b)) Draw & Explain operation of 2's complement adder-subtractor

OR

- 5. a. Explain Race around condition in Flip-flops
 - b) What is Full Adder & Implement Full adder using two half Adders
- 6. a) Explain characteristic equation of JK Flip-flop from excitation table.
 - b) Draw & explain function of Half Subtractor & Full -Subtractor with suitable diagrams

OR

- 7a). What is Full Adder & Implement Full adder using two half Adders
 - b) Design a 5 to 32 decoder using one 2 to 4 and four 3 to 8 decoder ICs

ΩR

- **8a**) Design a Full Adder circuit using a 3:8 Decoder
- b) state characteristic equation & truth table of master slave flip flop along with it's logic diagram
- 9a))Draw& explain Multiplexer & De-multiplexer
 - b) Design octal to binary encoder
- 10a) Draw logic diagram & Truth Table for 4*2 encoder
- b) Design 16:1 multiplexer using 8:1 multiplexer

OR

- 11.a)Design a SR flip flop using AND gates and NOR gates. Explain the operation of the SR flip flop with the help of characteristic table and characteristic equation
- b))Design a 4 bit magnitude comparator to compare two 4 bit numbers