MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY

(Sponsored by CMR Educational Society)
(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA \& NAAC - 'A' Grade - ISO 9001:2008 Certified) Maisammaguda, Dhulapally (Post Via Hakimpet), Secunderabad - 500100

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

ANALOG \& DIGITAL ELECTRONICS

 MODEL QUESTION PAPERS

 MODEL QUESTION PAPERS}

FOR

II B.TECH II SEMESTER
 (R-22)

EXAM PATTERN

Time: 3 Hours
Max. Marks: 60
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 10 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

UNIT 1
PART-A (10Marks)
1a) Why transistor is called a current controlling device?
b)What is meant by biasing ?
c) Define stabilization ?
d)Define operating point?
e)State different types of biasing ?
f)what is meant by AC load line ?
g)State factors that effect the stability of Q point of a transistor ?
h) state h parameters if a transistor
i) what is meant by DC load line ?
j) Define h parameter?

PART-B
(50 Marks)
2a)Explain about need for biasing of a transistor \& state factors affecting stability factor.
b)Explain terms bias stabilization and bias compensation

OR

3a) Compare all the three biasing circuits
b) Draw the circuits and explain principles of working of diode compensation for Vbe and Ico

4a)Draw fixed bias circuit and derive expression for stability factor S.
b)Explain AC load line analysis

OR
5a) Draw self bias circuit and derive expression for stability factor S.
b)Draw \& explain h parameter model in CE configuration

6a) Draw Collector to base bias circuit and derive expression for stability factor S.
b) Explain DC load line analysis

OR

7a) Draw \& explain h parameter model in CB configuration
b) state benefits of h parameters be\& why they called so ?

8a) Draw \& explain h parameter model in CC configuration
b)Explain process of analysis of CE configuration with simplified hybrid model

OR
9a) obtain CC h parameters in terms of CE parameters
b) Explain process of analysis of CB configuration with simplified hybrid model

UNIT 2

PART-A

(10Marks)
1a)Define term "pinchoff" for a FET
b) What are advantageous of FET over BJT?
c) State applications of JFET
d)State types of MOSFET
e)what are different biasing circuits of FET?
f)What is meant by gainbandwidth product?
$\mathrm{g})$ State terminals of a JFET ?
h)what is purpose of coupling capacitor in CS amplifier ?
i) state typesof FET amplifiers ?
j) Abbrevate FET

PART-B
(50 Marks)
2a)Explain about JFET Common Source amplifiers
b)Compare CS,CD \& CG amplifiers

OR

3a) Explain about JFET Common Drain amplifiers
b)Explain hybrid II model of CE transistor model with a neat sketch

4a)Compare FET amplifiers performance with BJT amplifiers
b)State \& explain how FET parameters will be determined?

OR

5a)Design FET amplifier
b)what is hybrid II model \& Derive hybrid II model elements of a CE transistor

UNIT 3

PART-A
(10Marks)

1. a) Name some positional weighted systems
b) why is binary number system used in digital system?
c) What is canonical form ?
d) How Do You Convert A Decimal Number Into A Number In Any other system with base b?
e) what is 2's complement method?
f) What are logic gates \& mention all logic gates ?
g) How BCD addition is performed?
h) What is POS \& SOP?
i) State basic theorems of Boolean Algebra
j) How can NOR gate can be used as inverter?

PART-B
(50 Marks)
2. a) Simplify Boolean expression $\mathrm{Y}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$
$\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right) \quad\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}\right)$
b) Verify expression $x^{\prime} y^{\prime}+x^{\prime} y+x y=x$ ' $+y$

OR
3. a) Simplify Boolean expression $\mathrm{Y}=\mathrm{ABC}{ }^{\prime}+\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$ on $\mathrm{K}-\mathrm{Map}$
b) Verify expression $(\mathrm{AB}+\mathrm{C}+\mathrm{D})\left(\mathrm{C}^{\prime}+\mathrm{D}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}+\mathrm{E}\right)=\mathrm{ABC}+\mathrm{D}$

4 a) State \& Prove Associative law \& Distributive law
b) Prove NAND Gate as Universal gate [5+5]

OR

5. a) Prove NOR gate as Universal gate.
b) Develop a gray code for ${ }_{(42) 10}$ and ${ }_{(97) 10}$ and convert them to Hexa sequence

6 a) Convert 105.15 to binary
b) Convert 11011.101 to decimal
c) Convert 163.875 to octal
d) convert 756 into hexa decimal

OR

7.a)convert binary number 1011100010 to grey code
b) state steps to convert binary to gray code.
8.a) Construct EXNOR \& EXOR , OR ,AND by using NAND \& NOR gates
b)Generate 4 bit gray code using mirror image property

OR

9.a) a) Convert 378.93 to octal\& Convert 5497 to binary [5]
b)Convert $1011011011 \& 01011111011.011111$ to hexadecimal
10.a)Represent decimal numbers in Excess-3 code i) 327 ii) 123 iii) 658
b) using 2 's complement method to subtract i) 01100-00011 ii) 10011-11001

OR

11.a) perform binary addition in $8-4-2-1 \mathrm{BCD}$ i) $24+18$ ii) $48+58$ b)perform(1110111000)-(001100010) by using 1 's complement method

UNIT 4

PART-A

(25 Marks)
1.a) What is Pair,Quad \& Octet in K- Map?
b) What do you mean by Don't care condition?
c) what are prime implicants?
d) State advantages of K-map?
e)what is maxterm?
f) what is minterm?

PART-B
(50 Marks)
2. a) state steps for converting NAND/NOR logic using graphical procedure.
b) construct Boolean expression $((\mathrm{A}+\mathrm{B})+\mathrm{C}) \mathrm{D}$ using NOR LOGIC

OR
3a) simplify given function $\mathbf{f}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})=\sum(0,1,2,6,7,8,10,12,14,15)$ using k map
b) Implement function F using two level forms NAND-NAND \& OR-NAND $\mathbf{f}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\sum \mathrm{m}(0,104,6,8,9,10,12)$

4 a) Define Prime implicants\& Essential Prime -Implicants
b) Implement EX-OR gate using only NAND gates

OR

5.a)Find prime Implicants and determine which are essential
$F(A, B, C, D)=\sum M(0,2,4,5,6,7,8,10,13,15)$
b) State rules of K-map simplification
6. a) simplify function using K-map

$$
F(A, B, C, D)=M(1,3,4,5,6,11,13,14,15)
$$

OR

7.a) state Rules for obtaining NAND/NAND logic diagram.
b) Implement EX-OR gate using only NOR gates
8.a)Reduce function using K map technique
$f(A, B, C, D)=\sum m(4,5,7,12,14,15)+d(3,8,10)$
b) Implement Boolean function with NOR-NOR logic $Y=A C+B C+A B+D$
10.a) Simplify Boolean function
$\mathrm{F}=\mathrm{A}^{\prime} \mathrm{BC}{ }^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{AB}^{\prime} \mathrm{CD}+\mathrm{AB}^{\prime} \mathrm{CD}^{\prime}+\mathrm{ABCD}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}^{\prime}$
OR
11.a) state Rules for obtaining NOR-NOR logic diagram b) simplify function \& realize using universal gates $\mathrm{F}(\mathrm{A}, \mathrm{B} . \mathrm{C})=\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{ABC}+\mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

UNIT 5
 PART-A(10 Marks)

1.a) What is full Adder?
b) Explain magnitude comparator
C) what is comparator?
d) why a multiplexer is called a data selector?
e)What is combinational circuit \& sequential circuit?
f) What is full sub-tractor?
g)state the difference between flip-flop and latch?
h)what is encoder?
i) Draw excitation table of JK Flip-flop
j) why is a de-multiplexer is called a distributor?

PART-B (50 Marks)

2.a) Draw logic diagram of master slave J K flip- flop using NAND gates and explainit's Truth table
b) Design 16:1 multiplexer using 8:1 multiplexer

OR

3.a). Design 2 bit comparator using gates
b) state characteristic equation \& truth table of SR flip flop along with it's logic diagram

4 a)Draw \& explain operation of Master-Slave SR flip-flop with block diagram.
b)) Draw \& Explain operation of 2's complement adder- subtractor

OR

5. a. Explain Race around condition in Flip-flops
b) What is Full Adder \&Implement Full adder using two half Adders
6. a)Explain characteristic equation of JK Flip-flop from excitation table.
b) Draw \&explain function of Half - Subtractor\& Full -Subtractor with suitable diagrams OR
7a). What is Full Adder \&Implement Full adder using two half Adders
b) Design a 5 to 32 decoder using one 2 to 4 and four 3 to 8 decoder ICs

OR

8a) Design a Full Adder circuit using a 3:8 Decoder
b) state characteristic equation \& truth table of master slave flip flop along with it's logic diagram

9a))Draw\& explain Multiplexer \& De-multiplexer
b) Design octal to binary encoder

10a) Draw logic diagram \& Truth Table for $4 * 2$ encoder
b) Design 16:1 multiplexer using 8:1 multiplexer

OR
11.a)Design a SR flip flop using AND gates and NOR gates. Explain the operation of the SR flip flop with the help of characteristic table and characteristic equation
b))Design a 4 bit magnitude comparator to compare two 4 bit numbers

